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1. INTRODUCTION 
     Solutions to conduction problems to establish the 
temperature distribution can be derived from the 
appropriate differential equations with imposed 
boundary conditions. Analysis of such solutions is better 
done through various computational techniques. Antar 
[4] offered a simplified numerical solution of unsteady 
heat conduction problem in a short cylinder. This paper 
proposes simpler solution for heat conduction problem in 
one –dimensional form and compares the results 
obtained in each method (FDM, FVM, FEM) [5], [12] for 
different meshes.  
     The finite difference method (FDM) [7] is based on 
the differential equation of the heat conduction, which is 
transformed into a difference equation. The temperature 
values are calculated at the nodes of the network. Using 
this method, convergence and stability problem can 
appear. Han et al. [5] used FDM method with FEM for 
analysis of one-dimensional fin. 
     Dhawan et al. [2] studied the heat conduction problem 
in an aluminium plate using finite element method and 
got very good results compared to the exact solution. The 
finite element method (FEM) [7] is based on the integral 
equation of the heat conduction. This is obtained from 
the differential equation using variational calculus. In 
first case the temperature values are calculated on the 
finite elements. Then, based on these partial solutions, 
the solution for the entire volume is determined. Using 
this method the whole surface has been divided into 

elements and fields with unregulated border. In this paper 
the temperature distribution is analyzed in the radial 
direction of a solid cylinder. The practical application is 
in the electrical wires where heat is generated in the wire 
and the same heat it needed to be dissipated to the 
surrounding so that the melting of the wire is avoided. 
     The cylinder in this case is infinitely long with 
isotropic physical characteristics and it has been assumed 
that the heat is being transferred in the radial direction. 
Heat conduction in the axial direction is neglected.  
 
 
2. THEORY 
2.1 Governing Differential Equation 
     The general heat conduction problem in a 3 
dimensional plane with generation and with time 
variation is given by the equation given below. 
 
Governing Differential Equation: 

                            (1) 
 
The similar governing differential Equation for cylinder 
is: 

                                             (2)  
 
     Neglecting d the heat conduction in the axial direction 
the equation becomes one dimension, assuming 
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axi-symmetry.  
.     The similar governing differential equation (GDE) for 
sphere is given as: 
 

                                          (3) 
 
     In this paper, focus has been given on the GDE for 
cylinder. 
 
2.2 Boundary Conditions 
a. Symmetric Boundary Condition 
     This treatment of the boundary condition corresponds 
to the physical assumption that, on the two sides of the 
boundary, the same physical processes exist. The 
variable values at the same distance from the boundary at 
the two sides are the same. The function of such a 
boundary is that of a mirror that can reflect all the 
fluctuations generated in the simulation region. 
     In this case, under symmetry boundary condition at 

the center i.e. at r=0 ,   

b. Robbin’s Boundary Condition 
     This treatment of the boundary is done when the 
boundary is exposed or open to the atmosphere. Hence in 
this kind of boundary condition the conductive heat flux 
and convective heat flux are made equal. This kind of 
boundary condition is also called as mixed type boundary 
condition. 
      Considering the above boundary condition for the 
cylinder, 
At r = R, 

                                                    (4) 

2.3 Exact Solution 
     Integrating the governing differential equation within 
the boundary conditions we obtain: 
 

                                       (5)            

Putting boundary condition 1: at r=0, , we get 

C1=0. 
Again integrating:  

Using boundary condition 2, at r=R 

 
We get C2=  

So the exact temperature profile is: 

                                        (6) 
 

3.  NUMERICAL SOLUTION 
3.1 Finite Difference Method (FDM)   
 
 

 
 
 
 
 
 
                 
 

 
 
 
 
 
 

Fig 1. Geometry of cylinder showing 6 different nodes 
for the finite difference method 

 
     As shown in Fig 1. , the symmetrical cylinder solid 
structure is divided into six different nodes for the finite 
difference method. The general governing differential 
equation is discretised using FDM is as follows: 
     For n equal divisions, there will be m nodes where 
m=n+1  
 

For node i=1: 
The governing differential equation can be written as: 
 

                             (7) 

To avoid singularity at the origin , L-Hospitals 

rule is used to get the discretized equation at i=1 as: 

 
 
For  i = 2 to m-1: 

 
For i= m: 

 
 
3.2 Finite Volume Method (FVM) 
     Finite Volume method is another method for 
numerical calculation of the differential equation. In 
this method the entire volume is divided into smaller 
volumes and inlet flux is equated with the outlet flux 
giving an approximate numerical approach to the 
temperature at each mesh [8]. 
     The FVM equations for the solid cylinder considered 
in this paper are: 
 

 
 

                                                      (8) 
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Fig 2. Geometry of cylinder showing 7 different shell 

centers for the finite volume method 
 
     For n equal divisions, there will be m shell centers   
where m=n+2  
 
For i=1:          
 

For i=2:      
 

For i= 3 to m-2: 
 

 
 
For i=m-1: 
 

 
 
For i=m: 
 

 
 
3.3 Solution Technique 
     The governing differential equation has been 
discretized using both FDM and FVM. Both the 
equations are in the form: aiTi=biTi+1+ciTi-1+di 

     So, Tri-Diagonal Matrix Algorithm (TDMA) [14] is 
appropriate to solve the discretized equations. 
     The corresponding MATLAB Code is appended. The 
TDMA solution follows forward elimination with 
back-substitution using the equation: Ti=PiTi+1+Qi, 
where 

 
 

3.4 Finite Element Method (FEM) 
     Finite Element Method is another method for 
numerical solution the differential equation. ANSYS 
13.0 well established commercial software is used in 
this paper for required analysis and the details are 
produced in the results and discussion section.  

 

4. RESULTS AND DISCUSSION 
     The one-dimensional heat conduction problem 
considered in this paper has been solved using exact 

solution and then compared with that obtained through 
FDM, FVM and FEM.  
     Following parameters have been considered for 
solutions in all techniques as cited above: 

 
Table 1: Parameter matrix 

 
Parameter Value 

Radius (m) 0.05 
Generation 
(Watt/m3) 

4x106 

k (Watt/mK) 40 
h (Watt/m2K) 400 
T∞ (oC) 20 

 
Table 2: Comparative results of temperature distribution 

obtained through FDM, FVM and exact 
solution 

 
Radi

us 
(m) 

FDM 
(0C) 

FVM 
(0C) 

Exact 
(0C) 

0.000 332.500 332.500 332.500 
0.005 331.875 332.500 331.875 
0.010 330.000 330.000 330.000 
0.015 326.875 327.500 326.875 
0.020 322.500 322.500 322.500 
0.025 316.875 317.500 316.875 
0.030 310.000 310.000 310.000 
0.035 301.875 302.500 301.875 
0.040 292.500 297.500 292.500 
0.045 281.875 292.500 281.875 
0.050 270.000 270.000 270.000 

 
     As can be seen from the above table (Table 2), the 
FDM solution and the exact solution are exactly match 
without any error. This is because of the use of second 
order accurate finite difference for first order derivative 
in which case the truncation error is found to be zero [7]. 
     The difference in results obtained through exact 
solution and that through FVM is due to the use of first 
order accurate difference equation, for first order 
derivative.  
     The results represented in Table 2 have also been 
shown in the form of graphical representation.  

 
Fig 3. Comparison of FDM, FVM and exact solution 

having six nodes  
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     One of the features of FDM and FVM is that the 
relative error between the analytic method and these two 
methods decreases as the numbers of nodes (shell 
centers) increase. This has been established in the 
following graph in which the results have been plotted by 
solving the heat conduction problem in FDM and FVM 
with 100 nodes. 

 
Fig 4.   Comparison of FDM, FVM and exact 
   solution with 100 nodes  

 
 
Results obtained through FE Analysis  
     ANSYS has been used for analysis of temperature 
distribution through FEM. 
 

 
Fig 5. Mesh on the entire rod 

 

 
Fig 6.  Mesh on the cross-section 

 

 
Fig 7.  Cross –sectional temperature contour  

 
     Above figure (Fig. 7) shows no direct matching the 
results obtained through exact solutions due to the 
non-uniformity in meshing. 
 

 
 5. CONCLUSION 
     The numerical modelling with FEM, FVM and FDM 
represents an efficient way to obtain temperature 
distribution in steady state conductive heat transfer 
processes. They also render the solution better to be 
automated through computer. 
     The numerical computation of the temperature field, 
on the basis of FDM offer better results for regular 
geometry, whereas FEM and FVM can offer better 
results for irregular geometry and complex boundary 
conditions.  Also, choice of finer grids which requires 
high computing capability can remove approximation 
errors to larger extent.  
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7. NOMENCLATURE 
 

Symbol Parameter Units 
r Radius Meter 
T Temperature oC 

 Density kg/m3 
t Time sec 
C Specific Heat 

Capacity 
kJ/Kg-K 

k Thermal 
Conductivity 

Watt/m-K 

h Convective heat 
Transfer Co-efficient 

Watt/m2-K 

g Generation term Watt/m3 

Ts Surface temperature oC 
T∞ Surrounding 

temperature 
oC 

i Node number No unit 
 

 
APPENDIX 
 
MATLAB CODE: 
clc 
clear all 
n=input('Number of nodes:'); 
r=input('Radius of the Cylinder(m):'); 
k=input('Thermal Conductivity(Watt/mK):'); 
h=input('Convective heat transfer 
Co-efficient(Watt/m2):'); 
g=input('Generation term(Watt/m3):'); 
Ti=input('Ambient air temperature(0C):'); 
m=n+1; 
dx=r/n; 
clc 
disp(' FINITE DIFFERENCE SOLUTION'); 
a(:,:)=0; 
for i=2:m-1 
    
 
 a(i,1)=2; 
    a(i,2)=(1+(1/(2*(i-1)))); 
    a(i,3)=(1-(1/(2*(i-1)))); 
    a(i,4)=g*dx*dx/k; 
end 
a(1,1)=4; 
a(1,2)=4; 
a(1,4)=g*dx*dx/k; 
a(m,1)=((2)+(1+(1/(2*(m-1))))*(2*dx*h/k)); 
a(m,3)=2; 
a(m,4)=((1+(1/(2*(m-1))))*(2*dx*h/k)*Ti)+(g*dx*dx/k
); 
for i=1:m 
   if(a(i,3)==0) 
        p(i)=a(i,2)/a(i,1); 
    end 
    if(a(i,3)~=0) 
        p(i)=a(i,2)/(a(i,1)-(a(i,3)*p(i-1))); 
    end 
end 
%disp('Value of P'); 
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%disp(p); 
%calculation of q 
for i=1:m 
    if(a(i,3)==0) 
        q(i)=a(i,4)/a(i,1); 
    end 
    if(a(i,3)~=0) 
    q(i)=(a(i,4)+(a(i,3)*q(i-1)))/(a(i,1)-(a(i,3)*p(i-1))); 
    end 
end 
%disp('Value of Q'),q 
%calculating u 
T(1:5)=0; 
for i=m:-1:1 
    if(i==m) 
        T(i)=q(i); 
    end 
    if(i~=m) 
        T(i)=(p(i)*T(i+1))+ q(i);                 
    end 
end 
T 
for i=1:m 
x(i)=(i-1)*dx; 
end 
plot(x,T(1:m)); 
hold on 
disp(' FINITE VOLUME SOLUTION'); 
m=n+2; 
a(:,:)=0; 
for i=3:m-2 
    a(i,1)=(2*i)-3; 
    a(i,2)=i-1; 
    a(i,3)=i-2; 
    a(i,4)=g*((2*i)-3)*dx*dx/(2*k); 
end 
a(1,1)=1; 
a(1,2)=1; 
 
 
 
a(2,1)=1; 
a(2,2)=1; 
a(2,4)=g*dx*dx/(2*k); 
a(m-1,1)=3*(m-1)-4; 
a(m-1,2)=2*(m-2); 
a(m-1,3)=m-3; 
a(m-1,4)=g*((2*(m-1))-3)*dx*dx/(2*k); 
a(m,1)=2+(h*dx/k); 
a(m,3)=2; 
a(m,4)=h*dx*Ti/k; 
for i=1:m 
   if(a(i,3)==0) 
        p(i)=a(i,2)/a(i,1); 
    end 
    if(a(i,3)~=0) 
        p(i)=a(i,2)/(a(i,1)-(a(i,3)*p(i-1))); 
    end 
end 
% disp('Value of P'); 
% disp(p); 

%calculation of q 
for i=1:m 
    if(a(i,3)==0) 
        q(i)=a(i,4)/a(i,1); 
    end 
    if(a(i,3)~=0) 
    q(i)=(a(i,4)+(a(i,3)*q(i-1)))/(a(i,1)-(a(i,3)*p(i-1))); 
    end 
end 
% disp('Value of Q'),q 
%calculating u 
T(1:7)=0; 
for i=m:-1:1 
    if(i==m) 
        T(i)=q(i); 
    end 
    if(i~=m) 
        T(i)=(p(i)*T(i+1))+ q(i);                 
    end 
end 
T 
x(1)=0; 
x(2)=dx/2; 
x(m)=r; 
for i=3:m-1 
x(i)=x(i-1)+dx; 
end 
plot(x,T(1:m)); 
hold on 
(g*r/(2*h))+(g*r*r/(4*k))+Ti 
a=[-g/(4*k) 0 (g*r/(2*h))+(g*r*r/(4*k))+Ti]; 
i=1; 
k1(1)=0; 
for x=0:0.001:r-0.001 
    i=i+1; 
    k1(i)=k1(i-1)+0.001; 
end 
plot(k1,polyval(a,k1)); 


